viernes, 8 de abril de 2016

Diagnostico de sistemas de comunicaciones.

Diagnostico de sistemas de comunicaciones.


El presente estudio consiste en un diagnóstico comunicacional, es un proceso de cambio que se inicia en el reconocimiento de la situación actual de una organización, de los distintos grupos que la conforman, con el objetivo de evaluar la eficacia de los sistemas de comunicación de la empresa o institución.
Es preciso aclarar que existen varios criterio sobre el diagnóstico, pero se considera acertado el de Prieto (1999) cuando expresa que es una herramienta para evaluar las prácticas sociales, orientadas a tener un conocimiento sistemático sobre las mismas, para reconocer fortalezas y debilidades a retomar en la planificación; acciones destinadas a generar modificaciones en la comunicación que ayuden a producir cambios positivo en el grupo, la comunidad o la institución.
Según Rivera (2007), el diagnóstico de comunicación es un “procedimiento que se realiza para evaluar la eficiencia de los sistemas de comunicación interna de una empresa.”Constituye además, para la autora, “el método que analiza los canales, emisores, contenidos e impacto de la comunicación en la organización”.
Se aprecia que es más amplio, abarcador y acepta, por tanto, su aplicación tanto interna como externa.
Tipos de diagnóstico de comunicación privilegiadas en el análisis.
Un diagnóstico también varía en función de los aspectos que privilegia en el análisis. Está más allá del grado de participación de los miembros de la comunidad o de la organización.
a) Diagnósticos que privilegian las relaciones de comunicación interna.
b) Diagnósticos que privilegian las relaciones de comunicación externa: interinstitucional, de medios, de destinatarios o interlocutores de la organización.
a) De comunicación interna
Este diagnóstico privilegia en el análisis las relaciones de comunicación interna que establece la organización. Un planificador abocado a este tipo de diagnóstico deberá trabajar algunos de estos temas:
1. Identificación de actores más vinculados a la comunicación dentro de la institución.

2. Análisis de la percepción de su tarea, de su imagen de la institución, de la percepción de los otros miembros de la institución y de los interlocutores.
3. Identificación y análisis de las relaciones entre los distintos grupos que conforman la institución.
4. Análisis y evaluación de las situaciones de comunicación: espacios, momentos comunicacionales.
5. Análisis de los mensajes que produce la institución en su contenido y forma.
6. Evaluación de los flujos y recursos comunicacionales de la institución: el tratamiento diferenciado de la información según los destinatarios.
Para ello el planificador deberá leer documentos, observar, realizar cuestionarios, hacer entrevistas individuales y grupales, talleres de reflexión. También puede efectuar el seguimiento y la observación de un grupo de la institución a lo largo de toda una jornada de trabajo., análisis discursivo de mensajes, analizar redes, analizar el organigrama y sociograma, etc.
Debe apuntar no solo a la detección de problemas, sino a los resultados deseados, los obstáculos que deben eliminarse para llegar a ese fin. Este nos proporciona varias ventajas como: la información confiable acerca de los procesos de comunicación que tienen lugar en el interior de la institución.
Ayuda a determinar las características deseables en dichos procesos para cada institución determinada. Permite comparar la comunicación interna que se da en la institución en diferentes momentos en el tiempo y bajo diferentes circunstancias. Ayuda a detectar problemas ya existentes y problemas potenciales en las redes y flujos de comunicación internos en la institución, tales como cuellos de botellas y distorsiones en los procesos comunicativos. Aumenta la efectividad de la comunicación al permitir definir líderes y patrones de comunicación, factores cuyo conocimiento facilita el diseño y difusión de todo tipo de mensajes en el interior de la institución.
Si se tiene en cuenta que el diagnóstico de comunicación supone fases para su realización, que estructuran el proceder del investigador para hacer la pesquisa y que estas consisten en: la búsqueda de datos, el análisis y la evaluación para identificar las deficiencias, para la obtención de resultados verídicos que sustenten una propuesta efectiva, en este caso, el plan de acciones de comunicación.

Tipo de Dirección IP.

Dirección IP pública.

Son visibles en todo Internet, Un ordenador con IP publica es visible desde cualquier otro ordenador conectado a Internet.

Dirección IP.

Son únicamente visibles con otros host de su propia red de otras redes privadas interceptadas.

Dirección IP estática.

Un host que se conecta a la red con dirección IP estatica con un mismo IP.


Dirección IP

Toda computadora conectada a internet (o a cualquier red) posee una identificación única, llamada dirección IP (en inglés, Internet Protocol), compuesta por cuatro combinaciones de números (p.ej. 187.25.14.190). 

Que es la dirección IP?

Estos números, llamados octetos, pueden formar más de cuatro billones de direcciones diferentes. Cada uno de los cuatro octetos tiene una finalidad específica. Los dos primeros grupos se refieren generalmente al país y tipo de red (clases). Este número es un identificador único en el mundo: en conjunto con la hora y la fecha, puede ser utilizado, por ejemplo, por las autoridades, para saber el lugar de origen de unaconexión.
ip
Para que entendamos mejor el IP debemos conocer primero el TCP. Un protocolo de red es como un idioma, si dos personas están conversando en idiomas diferentes ninguna entenderá lo que la otra quiere decir. Con las computadoras ocurre una cosa similar, dos computadoras que están conectadas físicamente por una red deben "hablar" el mismo idioma para que una entienda los requisitos de la otra. El protocolo TCP standariza el cambio de informacion entre las computadoras y hace posible la comunicación entre ellas. Es el protocolo más conocido actualmente pues es el protocolo standard de Internet.

El protocolo TCP contiene las bases para la comunicación de computadoras dentro de una red, pero así como nosotros cuando queremos hablar con una persona tenemos que encontrarla e identificarla, las computadoras de una red también tienen que ser localizadas e identificadas. En este punto entra la dirección IP. La dirección IP identifica a una computadora en una determinada red. A través de la dirección IP sabemos en que red está la computadora y cual es la computadora. Es decir verificado a través de un número único para aquella computadora en aquella red específica.


Como funciona?

Los IPs pueden ser fijos o dinámicos: actualmente, los IPs fijos son raros, hasta por una cuestión de seguridad ya que los ataques son más fáciles cuando el número es siempre el mismo. La rotación de direcciones IPs (IP dinámicos) funciona de la siguiente forma: un determinado proveedor de acceso a Internet (Ej. Arnet), posee X números IPs para usar. Cada vez que una máquina se conecta a internet, el proveedor le asigna una dirección IP aleatoria, dentro de una cantidad de direcciones IPs disponibles. El proceso más utilizado para esta distribución de IPs dinámicos es el Dynamic Host Configuration Protocol (DHCP). Para acceder a las URLs, o direcciones IPs públicos como conocemos (p.ej. www.informatica-hoy.com.ar), existen los servidores DNS (Domain Name Server, en inglés), una base de datos responsable por la traducción de nombres alfanuméricos a direcciones IP, fundamentales para el funcionamiento de Internet tal cómo la conoces hoy. 

Existen direcciones IPs que, por norma, están reservadas para usos específicos. El IP 0.0.0.0 es un número de red estándar; cómo la dirección IP 127.0.0.1 es usada para probar una conexión local, durante diagnósticos de problemas de la red.

Clases de direcciones IP

La dirección IP consiste en un número de 32 bits que en la práctica vemos siempre segmentado en cuatro grupos de 8 bits cada uno (xxx.xxx.xxx.xxx). Cada segmento de 8 bits varía de 0-255 y estan separados por un punto.

Esta división del número IP en segmentos posibilita la clasificación de las direcciones IPs en 5 clases: A, B, C, D e Y.
Cada clase de direccion permite un cierto número de redes y de computadoras dentro de estas redes.

En las redes de clase "A" los primeros 8 bits de la dirección son usados para identificar la red, mientras los otros tres segmentos de 8 bits cada uno son usados para identificar a las computadoras.

Una dirección IP de clase A permite la existencia de 126 redes y 16.777.214 computadoras por red. Esto pasa porque para las redes de clase A fueron reservados por la IANA (Internet Assigned Numbers Authority) los IDs de "0" hasta "126".
Direcciones IP Clase A
Direcciones IP Clase A 
En las redes de clase B los primeros dos segmentos de la dirección son usados para identificar la red y los últimos dos segmentos identifican las computadoras dentro de estas redes.

Una dirección IP de clase B permite la existencia de 16.384 redes y 65.534 computadoras por red. El ID de estas redes comienza con "128.0" y va hasta "191.255".
Direcciones IP Clase B
Direcciones IP Clase B
Redes de clase C utilizan los tres primeros segmentos de dirección como identificador de red y sólo el último segmento para identificar la computadora.
Una dirección IP de clase C permite la existencia de 2.097.152 redes y 254 computadoras por red. El ID de este tipo de red comienza en "192.0.1" y termina en "223.255.255". 
Direcciones IP Clase C
Direcciones IP Clase C

En las redes de clase D todos los segmentos son utilizados para identificar una red y sus direcciones van de " 224.0.0.0" hasta "239.255.255.255" y son reservados para los llamados multicast. 

Las redes de clase Y, así como las de clase D, utilizan todos los segmentos como identificadores de red y sus direcciones se inician en "240.0.0.0" y van hasta "255.255.255.255". La clase Y es reservada por la IANA para uso futuro.

Debemos hacer algunas consideraciones sobre las direcciones de clase ID "127" que son reservados para Loopback, o sea para pruebas internas en las redes. Todo ordenador equipado con un adaptador de red posee una dirección de loopback, la dirección 127.0.0.1 lo cual sólo es vista solamente por él mismo y sirve para realizar pruebas internas. 
ip
IP Estático e IP Dinámico
- IP estático

El IP estático (o fijo) es un número IP asignado permanentemente a una computadora, o sea, su dirección IP no cambia, excepto si dicha acción se fuera realizada manualmente. Por ejemplo, hay casos de proveedores de acceso a internet por ADSL, que le asignan un IP estático a algunos de sus clientes. Así, siempre que un cliente esté conectado, usará el mismo IP en Internet. Esa práctica es cada vez menos frecuente entre los proveedores de acceso, por una serie de factores, que incluye problemas de seguridad.

- IP dinámico

El IP dinámico, por su parte, es un número que es asignado a una computadora cuando esta se conecta a la red, pero que cambia cada vez que se establece la conexión. Por ejemplo, supón que te conectaste con tu computadora a internet hoy. Cuando te conectes mañana, te será asignada otra IP. Para entender mejor, imagina la siguiente situación: una empresa tiene 40 computadoras conectadas en red. Usando IPs dinámicos, la empresa pone a disposición 40 direcciones IP para tales computadoras. Como ninguna IP es fija, cuando una computadora "entra" en la red, le es asignada una IP de esas 40 que no esté siendo usada por ninguna otra computadora. Es más o menos así que los proveedores de internet trabajan. Cada vez que te conectas a internet, tu proveedor le da a tu computadora una IP que esté libre. 

El método más usado para la distribución de IPs dinámicas es el protocolo DHCP (Dynamic Host Configuration Protocol).

Pasos para constricción de red.

Pasos a Seguir para la Construcción de una Red

Los pasos que se han de seguir para la construcción de la Red son:
1.Diseñar la Red:
Dibuje un diagrama de la casa o la oficina donde se encuentra cada equipo eimpresora. O bien, puede crear una tabla donde figure el hardware que hay en cada equipo.
2.Determinar que tipo de Hardware tiene cada equipo, en caso de usar equipos ya establecidos en la empresa u oficina:Junto a cada equipo, anote el hardware, como módems y adaptadores de red, que tiene cada equipo.
3.Elegir el servidor o (HOST) determinado para la conexión con las estaciones de trabajo:Elija el equipo HOST para Conexión compartida a Internet.
4.Determinar el tipo de adaptadores de Red, que necesita para su Red domestica o de oficina:
Determine el tipo de adaptadores de red que necesita para su red doméstica o de pequeña oficina.
5.Haga una lista del hardware que necesita comprar: Aquí se incluyen módems, adaptadores de red, concentradores y cables.
6.Medición del espacio entre las Estaciones de Trabajo y El servidor:En este espacio se medirá las distancia que existe entre las Estaciones de Trabajo y el Servidor (HOST), con un Metro, esto se hace para evitar excederse en los metros establecidos para dicha construcción; asi,evitar costes excesivos en cables.

7.Colocación de las canaletas PlásticasPara la colocación de las canaletas plástica simplemente tomaremos las medidas establecidas, cortaremos las canaletas, colocaremos los ramplugs en la pared y atornillaremos las canaletas plásticas con los tornillos tira fondo.


8.Medición del Cableado:En esta parte haremos el mismo procedimiento que con las canaletas, tomaremos las medidas del cableado para evitar el exceso de cables entre las Estaciones de Trabajo.





9.Conexión del Cableado a los Conectores:
En la conexión para los conectores necesitaremos: El Cable Conectar, Los Conectores RJ45 y un Ponchador. El Primer paso será Tomar el Cable colocarlo al final del Ponchador, luego procederemos a desgarrarlo (Pelarlo), el siguiente paso será cortarlo en línea recta es decir todos deben quedar parejos, ya que si esto no sucede tendremos una mala conexión y algunos contactos quedaran mas largos que otros. Bien proseguiremos a introducir el primer Par de de Cables.

¿Como Haremos esto? De esta Manera:
Examinaremos las normativas ya que esto es indispensable para el buen funcionamiento de la Red.

 
Luego, de  tener los cables elaborados los conectamos a cada PC que se encuentra en nuestra Red,conectar los cables con el faceplate de la canaleta y ella va directo al Swtich.

10.Configurar Nuestra IP:
En cada PC nos dirigimos a conexiones de red y configuramos las IP, ya sea (192.168.1.1) para así hacer la conexión de la Red.


11.Configurar Ip en los Nodos Restantes Cambiando en Último Número:
Luego en cada computador cambiamos solo el numero final en vez de 1 el 2 y así sucesivamente.


12.Configurar la Red en cada Nodo:

12.1. En el icono de Equipo haz click con el botón derecho y entra a Propiedades.
12.2. En la ventana de Propiedades del sistema ve a la pestaña Nombre de equipo.
12.3. Ahí vas a poner el nombre del equipo en la red local y el grupo de trabajo, si cambias esta debes de reiniciar el sistema después de haberlo hecho.
12.4. Ahora después de esto te conectas a Internet y Windows te va a preguntar si estás en una Red DomésticaRed de Trabajo o en una Red Pública, si eliges Red Pública tal vez tengas problemas porque Windows 7 es muy especial con la seguridad.
12.5. Una vez configurado tu red como doméstica o de trabajo puedes comenzar a compartir tus imágenes, música, videos, documentos e impresoras.

Nodo y estación de trabajo.

Estaciones de Trabajo

Una estación de trabajo es una computadora clienta la cual se utiliza para ejecutar aplicaciones. Un servidor es una computadora que ejecuta un NOS.
La mayoría de los actuales sistemas operativos de escritorio incluyen capacidades de networking y permite el acceso a múltiples usuarios. Las aplicaciones típicas de las estaciones de trabajo de bajo nivel o de escritorio pueden incluir el procesamiento de palabras, hoja de cálculo y programas de administración financiera.
En las estaciones de trabajo de alto nivel, las aplicaciones pueden incluir el diseño gráfico o la administración de equipos y otras más, como se ha mencionado antes.
Una estación de trabajo sin disco es una clase especial de computadora diseñada para funcionar en una red. Como su nombre lo indica, no tiene disco duro pero sí incluye monitortecladomemoria, instrucciones de arranque en la ROM y una tarjeta de red. El software que se utiliza para establecer una conexión con la red se carga desde un chip ROM que se encuentra en NIC.
Los sistemas de los servidores deben equiparse para permitir el acceso simultáneo de múltiples usuarios y la realización de múltiples tareas, en la medida que los clientes soliciten los recursos remotos del servidor. Dichos servidores en general se configuran para ofrecer uno o más servicios de red utilizando la familia de protocolos de la InternetTCP/IP.
Los servidores que ejecutan NOS también se utilizan para autenticar usuarios y brindar acceso a recursos compartidos. La identificación y autorizaciones se efectúan mediante la asignación de un nombre de cuenta y una contraseña a cada cliente. Para lograr mayores velocidades de ejecución, algunos sistemas cuenta con más de una CPU. Dichos sistemas reciben el nombre de sistemas multiprocesador.
Como los servidores funcionan como depósitos centrales de recursos vitales para la operación de los sistemas clientes, deben ser eficientes y robustos.
La redundancia es una característica de los sistemas de tolerantes a fallas. Estos sistemas están diseñados para sobrevivir a las fallas y es posible repararlos sin interrupciones mientras los sistemas se encuentren activos y en funcionamiento.
Las aplicación y funciones de los servidores incluyen servicios Web mediante el protocolo de transferencia de hipertexto (http), el protocolo de transferencia de archivos (FTP) y el sistema de nombres de dominios (DNS). Los protocolos estándar de correo electrónico usados en los servidores de las redes incluyen el Protocolos sencillo de transferencia de correo (SMTP), el Protocolo de oficina de correos Versión 3 (POP3) y el Protocolo Internet de acceso a mensajes (IMAP),- Los protocolos usados para compartir archivos incluyen el Sistema de archivos en red de Sun Microsystems (NFS) y el Bloque de mensajes del servidor de Microsoft (SMB).
Un servidor también puede proveer el Protocolo de configuración de host dinámico (DHCP), el cual automáticamente asigna las direcciones lP a las estaciones de trabajo.
El modelo de computación cliente-servidor distribuye el procesamiento entre múltiples computadora. En un entorno cliente-servidor el cliente y el servidor comparten o se distribuyen las responsabilidades de procesamiento.
Cualquier computadora que ejecute TCP/IP ya sea una estación de trabajo o un servidor es considerada una computadora host.
·         Host local: el equipo en el que el usuario trabaja en ese momento.
·         Host remoto: un sistema al que el usuario tiene acceso desde otro sistema.
La Internet también es un buen ejemplo de una relación cliente-servido de procesamiento distribuido.
En la computación cliente-servidor el almacenamiento de la base de datos y su procesamientos e realiza en el servidor. El clientes sólo debe generar y enviar la consulta Los servidores requieren de hardware adicional y software especializado lo cual aumentas sustancialmente los costos.
El OS (sistema operativo) de una computadora conforma los cimientos de software sobre los cuales se ejecutan las aplicaciones y los servicios en una estación de trabajo. D e igual manera un NOS permite la comunicación entre múltiples dispositivos y el compartir recursos a través de la red. Los servidores de red UNIX, Microsoft Windows NT, o Windows 2000 incluyen un NOS.


miércoles, 6 de abril de 2016

Tipos de redes.


Términos de redes.

TERMINOS


Vamos ahora a introducir algunos términos que son muy usados cuando nos referimos a servidores. Estos términos suelen usarse para definir lo que hace un servidor. Por ejemplo, se suele llamar servidor web a aquél cuya actividad principal es enviar páginas web a los usuarios que las solicitan cuando se conectan a internet. Veamos los términos usados habitualmente cuando se habla de servidores:
Proxy: Es un programa u ordenador que hace de intermediario entre dos ordenadores. Supongamos que nosotros nos identificamos como “juanito” y queremos hacer una petición al servidor llamado “pepito”. Si la petición la hacemos directamente, “pepito” sabe que “juanito” le hizo una petición. En cambio, si usamos un proxy que sería un intermediario que por ejemplo podemos llamar “manolito”, la petición se la haríamos a manolito y éste se la haría a pepito. De esta manera, pepito no sabe que quien realmente ha hecho la petición es juanito. A su vez, el intermediario puede bloquear determinadas peticiones. Por ejemplo, si pedimos a un proxy que tiene bloqueadas las extensiones .xxx, que nos muestre la página web “amanecer.xxx”, dicha página web no se nos mostrará porque el proxy actúa bloqueándola.
DNSson las siglas de Domain Name System. Es un sistema por el que se asocia una información con un nombre de dominio. El ejemplo más claro es cuando introducimos una ruta url en nuestro navegador de internet del tipohttp://www.aprenderaprogramar.com. Una vez hemos introducido esta ruta, dicha información es enviada a un servidor DNS que lo que hace es determinar en qué lugar se encuentra esa página web alojada y nos conecta con ella.
WEBel término web va asociado a internet, donde los usuarios utilizan sus navegadores web para visitar sitios web, que básicamente se componen de páginas web donde los usuarios pueden acceder a informaciones con texto, videos, imágenes, etc y navegan a través de enlaces o hipervínculos a otras webs.
FTP: acrónimo de File Transfer Protocol o Protocolo de transferencia de archivos. Es un protocolo utilizado para la transferencia de archivos entre un cliente y un servidor, permitiendo al cliente descargar el archivo desde el servidor o al servidor recibir un archivo enviado desde un cliente. Por defecto FTP no lleva ningún tipo de encriptación permitiendo la máxima velocidad en la transferencia de los archivos, pero puede presentar problemas de seguridad, por lo que muchas veces se utiliza SFTP que permite un servicio de seguridad encriptada.
Dedicaciónnormalmente al ser los servidores equipos más potentes y por tanto más caros, se suelen compartir entre varias personas o empresas, permitiéndoles a todos tener un servicio de gran calidad y a un mínimo precio. En este caso se dice que se trata de un servidor compartido. Pero en otros casos puede haber servidores dedicados exclusivamente a una sola persona o empresa si esta puede hacer frente al gasto económico que supone. En este caso se dice que el servidor es “dedicado”.
POP3 y SMTP: hay servidores especializados en correos electrónicos o e-mails. Estos utilizan los protocolos POP3 y SMTP para recibir los correos de nuestro servidor en nuestro cliente, o para enviar desde nuestro cliente un correo al servidor de otro cliente. Aunque hay diversos tipos de protocolos estos son los más utilizados. Un protocolo no es otra cosa que “una forma de hacer algo”.
DHCP y TCP/IP: cuando un cliente se conecta a un servidor, éste tiene que identificar a cada cliente y lo hace con una dirección IP. Es decir, cuando desde casa entramos en una página web estamos identificados por una serie de dígitos que son nuestra IP. Esta dirección ip son 4 pares de números y es única para cada cliente. Así el protocolo TCP/IP permite que cuando nos conectamos a internet se nos asigne una dirección IP que nos identifica. Cada ordenador conectado a internet tiene su dirección IP, aunque en el caso de usuarios de una empresa que da acceso a internet como “Telefónica”, varios usuarios de la empresa pueden tener la misma IP porque utilizan un mismo servidor para canalizar sus peticiones en internet. Por otro lado, DHCP es un protocolo de asignación dinámica de host que permite asignar una ip dinámicamente a cada cliente cuando este se conecta con el servidor que le da acceso a internet. Esto significa que si nos conectamos el lunes a internet, nuestra IP, que nos asigna Telefónica, puede ser 82.78.12.52. En cambio, si nos conectamos el jueves nuestra IP podría ser 212.15.23.88. ¿Por qué cambia nuestra IP? Porque la empresa que nos da conexión nos asigna una de sus IPs disponibles. En cambio, los servidores al ser máquinas más potentes e importantes suelen tener una IP fija.

Servidores de red y sus tipos

DEFINICIÓN DE SERVIDOR
Un servidor, como la misma palabra indica, es un ordenador o máquina informática que está al “servicio” de otras máquinas, ordenadores o personas llamadas clientes y que le suministran a estos, todo tipo de información. A modo de ejemplo, imaginemos que estamos en nuestra casa, y tenemos una despensa.


Pues bien a la hora de comer necesitamos unos ingredientes por lo cual vamos a la despensa, los cogemos y nos lo llevamos a la cocina para cocinarlos. Así en nuestro ejemplo, nuestra máquina servidor sería la despensa, y los clientes somos nosotros como personas que necesitamos unos ingredientes del servidor o despensa. Pues bien con este ejemplo podemos entender ahora un poco mejor qué es un servidor.
Por tanto un servidor en informática será un ordenador u otro tipo de dispositivo que suministra una información requerida por unos clientes (que pueden ser personas, o también pueden ser otros dispositivos como ordenadores, móviles, impresoras, etc.).
Por tanto básicamente tendremos el siguiente esquema general, en el denominado esquema “cliente-servidor” que es uno de los más usados ya que en él se basa gran parte de internet.


Como vemos, tenemos una máquina servidora que se comunica con variados clientes, todos demandando algún tipo de información. Esta información puede ser desde archivos de texto, video, audio, imágenes, emails, aplicaciones, programas, consultas a base de datos, etc.
Por regla general, las máquinas servidoras suelen ser algo más potentes que un ordenador normal. Sobre todo suelen tener más capacidad tanto de almacenamiento de información como de memoria principal, ya que tienen que dar servicio a muchos clientes. Pero como todo, también depende de las necesidades, ya que podemos tener un servidor de menores prestaciones si vamos a tener pocos clientes conectados, o si los servicios que queramos en el servidor no requieren una gran capacidad servidora. A modo de ejemplo, podríamos hacer funcionar un ordenador en nuestra casa como si fuera un servidor, aunque esto no es lo más habitual. Por general, los servidores suelen estar situados en centros de datos de empresas (edificios con grandes salas dedicadas a alojar a los servidores).


Cables de red y conectores.

Cables y conectores
Los cables son el componente básico de todo sistema de cableado. Existen diferentes tipos de cables. La elección de uno respecto a otro depende del ancho de banda necesario, las distancias existentes y el coste del medio.Cada tipo de cable tiene sus ventajas e inconvenientes; no existe un tipo ideal. Las principales diferencias entre los distintos tipos de cables radican en la anchura de banda permitida y consecuentemente en el rendimiento máximo de transmisión, su grado de inmunidad frente a interferencias electromagnéticas y la relación entre la amortiguación de la señal y la distancia recorrida.
En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificios:
  • Coaxial
  • Par Trenzado
  • Fibra Óptica
COAXIAL: Este tipo de cable esta compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas. El ejemplo más común de este tipo de cables es el coaxial de televisión.

Originalmente fue el cable más utilizado en las redes locales debido a su alta capacidad y resistencia a las interferencias, pero en la actualidad su uso está en declive.
Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.
TIPOS DE CABLE COAXIAL
THICK (grueso). Este cable se conoce normalmente como "cable amarillo", fue el cable coaxial utilizado en la mayoría de las redes. Su capacidad en términos de velocidad y distancia es grande, pero el coste del cableado es alto y su grosor no permite su utilización en canalizaciones con demasiados cables. Este cable es empleado en las redes de área local conformando con la norma 10 Base 2.
THIN (fino). Este cable se empezó a utilizar para reducir el coste de cableado de la redes. Su limitación está en la distancia máxima que puede alcanzar un tramo de red sin regeneración de la señal. Sin embargo el cable es mucho más barato y fino que el thick y, por lo tanto, solventa algunas de las desventajas del cable grueso. Este cable es empleado en las redes de área local conformando con la norma 10 Base 5.
El cable coaxial en general solo se puede utilizar en conexiones Punto a Punto o dentro de los racks.
MODELOS DE CABLE COAXIAL
  • Cable estándar Ethernet, de tipo especial conforme a las normas IEEE 802.3 10 BASE 5. Se denomina también cable coaxial "grueso", y tiene una impedancia de 50 Ohmios. El conector que utiliza es del tipo "N".
  • Cable coaxial Ethernet delgado, denominado también RG 58, con una impedancia de 50 Ohmios. El conector utilizado es del tipo BNC.
  • Cable coaxial del tipo RG 62, con una impedancia de 93 Ohmios. Es el cable estándar utilizado en la gama de equipos 3270 de IBM, y tambien en la red ARCNET. Usa un conector BNC.
  • Cable coaxial del tipo RG 59, con una impedancia de 75 Ohmios. Este tipo de cable lo utiliza, en versión doble, la red WANGNET, y dispone de conectores DNC y TNC.
Tambien están los llamados "TWINAXIAL" que en realidad son 2 hilos de cobre por un solo conducto.

PAR TRENZADO: Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado. Con anterioridad, en Europa, los sistemas de telefonía empleaban cables de pares no trenzados.
Cada cable de este tipo está compuesto por un serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto.
El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.
TIPOS DE CABLE TRENZADO
NO APANTALLADO (UTP): Es el cable de par trenzado normal y se le referencia por sus siglas en inglés UTP (Unshield Twiested Pair / Par Trenzado no Apantallado). Las mayores ventajas de este tipo de cable son su bajo costo y su facilidad de manejo. Sus mayores desventajas son su mayor tasa de error respecto a otros tipos de cable, así como sus limitaciones para trabajar a distancias elevadas sin regeneración.
Para las distintas tecnologías de red local, el cable de pares de cobre no apantallado se ha convertido en el sistema de cableado más ampliamente utilizado.
El estándar EIA-568 en el adendum TSB-36 diferencia tres categorías distintas para este tipo de cables:
  • Categoría 3: Admiten frecuencias de hasta 16 Mhz y se suelen usar en redes IEEE 802.3 10BASE-T y 802.5 a 4 Mbps.
  • Categoría 4: Admiten frecuencias de hasta 20 Mhz y se usan en redes IEEE 802.5 Token Ring y Ethernet 10BASE-T para largas distancias.
  • Categoría 5: Admiten frecuencias de hasta 100 Mhz y se usan para aplicaciones como TPDDI  y FDDI entre otras.
Los cables de categoría 1 y 2 se utilizan para voz y transmisión de datos de baja capacidad (hasta 4Mbps). Este tipo de cable es el idóneo para las comunicaciones telefónicas, pero las velocidades requeridas hoy en día por las redes necesitan mejor calidad.
Las características generales del cable UTP son:
Tamaño: El menor diámetro de los cables de par trenzado no apantallado permite aprovechar más eficientemente las canalizaciones y los armarios de distribución. El diámetro típico de estos cables es de 0'52 mm.
Peso: El poco peso de este tipo de cable con respecto a los otros tipos de cable facilita el tendido.
Flexibilidad: La facilidad para curvar y doblar este tipo de cables permite un tendido más rápido así como el conexionado de las rosetas y las regletas.
Instalación: Debido a la amplia difusión de este tipo de cables, existen una gran variedad de suministradores, instaladores y herramientas que abaratan la instalación y puesta en marcha.
Integración: Los servicios soportados por este tipo de cable incluyen:
  • Red de Area Local ISO 8802.3 (Ethernet) y ISO 8802.5 (Token Ring)
  • Telefonía analógica
  • Telefonía digital
  • Terminales síncronos
  • Terminales asíncronos
  • Líneas de control y alarmas
APANTALLADO (STP): Cada par se cubre con una malla metálica, de la misma forma que los cables coaxiales, y el conjunto de pares se recubre con una lámina apantallante. Se referencia frecuentemente con sus siglas en inglés STP (Shield Twiested Pair / Par Trenzado Apantallado).
El empleo de una malla apantallante reduce la tasa de error, pero incrementa el coste al requerirse un proceso de fabricación más costoso.
UNIFORME (FTP): Cada uno de los pares es trenzado uniformemente durante su creación. Esto elimina la mayoría de las interferencias entre cables y además protege al conjunto de los cables de interferencias exteriores. Se realiza un apantallamiento global de todos los pares mediante una lámina externa apantallante. Esta técnica permite tener características similares al cable apantallado con unos costes por metro ligeramente inferior. Este es usado dentro de la categoria 5 y 5e (Hasta 100 Mhz).

Los cables son el componente básico de todo sistema de cableado. Existen diferentes tipos de cables. La elección de uno respecto a otro depende del ancho de banda necesario, las distancias existentes y el coste del medio.Cada tipo de cable tiene sus ventajas e inconvenientes; no existe un tipo ideal. Las principales diferencias entre los distintos tipos de cables radican en la anchura de banda permitida y consecuentemente en el rendimiento máximo de transmisión, su grado de inmunidad frente a interferencias electromagnéticas y la relación entre la amortiguación de la señal y la distancia recorrida.
En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificios:
  • Coaxial
  • Par Trenzado
  • Fibra Óptica
COAXIAL: Este tipo de cable esta compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas. El ejemplo más común de este tipo de cables es el coaxial de televisión.
Originalmente fue el cable más utilizado en las redes locales debido a su alta capacidad y resistencia a las interferencias, pero en la actualidad su uso está en declive.
Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.
TIPOS DE CABLE COAXIAL
THICK (grueso). Este cable se conoce normalmente como "cable amarillo", fue el cable coaxial utilizado en la mayoría de las redes. Su capacidad en términos de velocidad y distancia es grande, pero el coste del cableado es alto y su grosor no permite su utilización en canalizaciones con demasiados cables. Este cable es empleado en las redes de área local conformando con la norma 10 Base 2.THIN (fino). Este cable se empezó a utilizar para reducir el coste de cableado de la redes. Su limitación está en la distancia máxima que puede alcanzar un tramo de red sin regeneración de la señal. Sin embargo el cable es mucho más barato y fino que el thick y, por lo tanto, solventa algunas de las desventajas del cable grueso. Este cable es empleado en las redes de área local conformando con la norma 10 Base 5.
El cable coaxial en general solo se puede utilizar en conexiones Punto a Punto o dentro de los racks.
MODELOS DE CABLE COAXIAL
  • Cable estándar Ethernet, de tipo especial conforme a las normas IEEE 802.3 10 BASE 5. Se denomina también cable coaxial "grueso", y tiene una impedancia de 50 Ohmios. El conector que utiliza es del tipo "N".
  • Cable coaxial Ethernet delgado, denominado también RG 58, con una impedancia de 50 Ohmios. El conector utilizado es del tipo BNC.
  • Cable coaxial del tipo RG 62, con una impedancia de 93 Ohmios. Es el cable estándar utilizado en la gama de equipos 3270 de IBM, y tambien en la red ARCNET. Usa un conector BNC.
  • Cable coaxial del tipo RG 59, con una impedancia de 75 Ohmios. Este tipo de cable lo utiliza, en versión doble, la red WANGNET, y dispone de conectores DNC y TNC.
Tambien están los llamados "TWINAXIAL" que en realidad son 2 hilos de cobre por un solo conducto.
PAR TRENZADO: Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado. Con anterioridad, en Europa, los sistemas de telefonía empleaban cables de pares no trenzados.
Cada cable de este tipo está compuesto por un serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto.
El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.
TIPOS DE CABLE TRENZADO
NO APANTALLADO (UTP): Es el cable de par trenzado normal y se le referencia por sus siglas en inglés UTP (Unshield Twiested Pair / Par Trenzado no Apantallado). Las mayores ventajas de este tipo de cable son su bajo costo y su facilidad de manejo. Sus mayores desventajas son su mayor tasa de error respecto a otros tipos de cable, así como sus limitaciones para trabajar a distancias elevadas sin regeneración.Para las distintas tecnologías de red local, el cable de pares de cobre no apantallado se ha convertido en el sistema de cableado más ampliamente utilizado.
El estándar EIA-568 en el adendum TSB-36 diferencia tres categorías distintas para este tipo de cables:
  • Categoría 3: Admiten frecuencias de hasta 16 Mhz y se suelen usar en redes IEEE 802.3 10BASE-T y 802.5 a 4 Mbps.
  • Categoría 4: Admiten frecuencias de hasta 20 Mhz y se usan en redes IEEE 802.5 Token Ring y Ethernet 10BASE-T para largas distancias.
  • Categoría 5: Admiten frecuencias de hasta 100 Mhz y se usan para aplicaciones como TPDDI  y FDDI entre otras.
Los cables de categoría 1 y 2 se utilizan para voz y transmisión de datos de baja capacidad (hasta 4Mbps). Este tipo de cable es el idóneo para las comunicaciones telefónicas, pero las velocidades requeridas hoy en día por las redes necesitan mejor calidad.
Las características generales del cable UTP son:
Tamaño: El menor diámetro de los cables de par trenzado no apantallado permite aprovechar más eficientemente las canalizaciones y los armarios de distribución. El diámetro típico de estos cables es de 0'52 mm.Peso: El poco peso de este tipo de cable con respecto a los otros tipos de cable facilita el tendido.
Flexibilidad: La facilidad para curvar y doblar este tipo de cables permite un tendido más rápido así como el conexionado de las rosetas y las regletas.
Instalación: Debido a la amplia difusión de este tipo de cables, existen una gran variedad de suministradores, instaladores y herramientas que abaratan la instalación y puesta en marcha.
Integración: Los servicios soportados por este tipo de cable incluyen:
  • Red de Area Local ISO 8802.3 (Ethernet) y ISO 8802.5 (Token Ring)
  • Telefonía analógica
  • Telefonía digital
  • Terminales síncronos
  • Terminales asíncronos
  • Líneas de control y alarmas
APANTALLADO (STP): Cada par se cubre con una malla metálica, de la misma forma que los cables coaxiales, y el conjunto de pares se recubre con una lámina apantallante. Se referencia frecuentemente con sus siglas en inglés STP (Shield Twiested Pair / Par Trenzado Apantallado).El empleo de una malla apantallante reduce la tasa de error, pero incrementa el coste al requerirse un proceso de fabricación más costoso.
UNIFORME (FTP): Cada uno de los pares es trenzado uniformemente durante su creación. Esto elimina la mayoría de las interferencias entre cables y además protege al conjunto de los cables de interferencias exteriores. Se realiza un apantallamiento global de todos los pares mediante una lámina externa apantallante. Esta técnica permite tener características similares al cable apantallado con unos costes por metro ligeramente inferior. Este es usado dentro de la categoria 5 y 5e (Hasta 100 Mhz).
FIBRA OPTICAEste cable está constituido por uno o más hilos de fibra de vidrio, cada fibra de vidrio consta de:
  • Un núcleo central de fibra con un alto índice de refracción.
  • Una cubierta que rodea al núcleo, de material similar, con un índice de refracción ligeramente menor.
  • Una envoltura que aísla las fibras y evita que se produzcan interferencias entre fibras adyacentes, a la vez que proporciona protección al núcleo. Cada una de ellas está rodeada por un revestimiento y reforzada para proteger a la fibra.

La luz producida por diodos o por láser, viaja a través del núcleo debido a la reflexión que se produce en la cubierta, y es convertida en señal eléctrica en el extremo receptor.
La fibra óptica es un medio excelente para la transmisión de información debido a sus excelentes características: gran ancho de banda, baja atenuación de la señal, integridad, inmunidad a interferencias electromagnéticas, alta seguridad y larga duración. Su mayor desventaja es su coste de producción superior al resto de los tipos de cable, debido a necesitarse el empleo de vidrio de alta calidad y la fragilidad de su manejo en producción. La terminación de los cables de fibra óptica requiere un tratamiento especial que ocasiona un aumento de los costes de instalación.
Uno de los parámetros más característicos de las fibras es su relación entre los índices de refracción del núcleo y de la cubierta que depende también del radio del núcleo y que se denomina frecuencia fundamental o normalizada; también se conoce como apertura numérica y es adimensional. Según el valor de este parámetro se pueden clasificar los cables de fibra óptica en dos clases:
  • Monomodo. Cuando el valor de la apertura numérica es inferior a 2,405, un único modo electromagnético viaja a través de la línea y por tanto ésta se denomina monomodo. Sólo se propagan los rayos paralelos al eje de la fibra óptica, consiguiendo el rendimiento máximo, en concreto un ancho de banda de hasta 50 GHz.Este tipo de fibras necesitan el empleo de emisores láser para la inyección de la luz, lo que proporciona un gran ancho de banda y una baja atenuación con la distancia, por lo que son utilizadas en redes metropolitanas y redes de área extensa. Por contra, resultan más caras de producir y el equipamiento es más sofisticado. Puede operar con velocidades de hasta los 622 Mbps y tiene un alcance de transmisión de hasta 100 Km.
  • Multimodo. Cuando el valor de la apertura numérica es superior a 2,405, se transmiten varios modos electromagnéticos por la fibra, denominándose por este motivo fibra multimodo.
Las fibras multimodo son las más utilizadas en las redes locales por su bajo coste. Los diámetros más frecuentes 62,5/125 y 100/140 micras. Las distancias de transmisión de este tipo de fibras están alrededor de los 2,4 kms y se utilizan a diferentes velocidades: 10 Mbps, 16 Mbps, 100 Mbps y 155 Mbps.
TIPOS DE MULTIMODO
  • Con salto de índice. La fibra óptica está compuesta por dos estructuras que tienen índices de refracción distintos. La señal de longitud de onda no visible por el ojo humano se propaga por reflexión. Asi se consigue un ancho de banda de hasta 100 MHz.
  • Con índice gradual. El índice de refracción aumenta proporcionalmente a la distancia radial respecto al eje de la fibra óptica. Es la fibra más utilizada y proporciona un ancho de banda de hasta 1 GHz.
Las características generales de la fibra óptica son:
Ancho de banda: La fibra óptica proporciona un ancho de banda significativamente mayor que los cables de pares (UTP / STP) y el Coaxial. Aunque en la actualidad se están utilizando velocidades de 1,7 Gbps en la redes públicas, la utilización de frecuencias más altas (luz visible) permitirá alcanzar los 39 Gbps. El ancho de banda de la fibra óptica permite transmitir datos, voz, vídeo, etc.
Distancia: La baja atenuación de la señal óptica permite realizar tendidos de fibra óptica sin necesidad de repetidores.
Integridad de datos: En condiciones normales, una transmisión de datos por fibra óptica tiene una frecuencia de errores o BER (Bit Error Rate) menor de 10 E-11. Esta característica permite que los protocolos de comunicaciones de alto nivel, no necesiten implantar procedimientos de corrección de errores por lo que se acelera la velocidad de transferencia.
Duración: La fibra óptica es resistente a la corrosión y a las altas temperaturas. Gracias a la protección de la envoltura es capaz de soportar esfuerzos elevados de tensión en la instalación.
Seguridad: Debido a que la fibra óptica no produce radiación electromagnética, es resistente a la acciones intrusivas de escucha. Para acceder a la señal que circula en la fibra es necesario partirla, con lo cual no hay transmisión durante este proceso, y puede por tanto detectarse.
La fibra también es inmune a los efectos electromagnéticos externos, por lo que se puede utilizar en ambientes industriales sin necesidad de protección especial.